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§1 July 5, 2017

§1.1 Introduction

Mechanics is the analysis of forces on bodies. This encompasses statics and dynamics,
which concerns forces on rigid bodies. Mechanics also encompasses solids and fluids,
which which are classified as deformable bodies that change shape. We study this for the
following two reasons:

1. Design - We want to make efficient use of materials.

2. Failure Safety - We do not want the materials to break (strength), or to deform
(change of shape).

Objects exhibit behaviour dependent on their structure and composition.

1. Structural Behaviour concerns forces, moments, boundary conditions, and reac-
tion forces.

2. Material Behaviour concerns the stresses and strains on materials. Stresses
and strains are related by material properties.

§1.2 Internal Reactions

Recall that we can divide a body into sections. When doing so, the normal force is
directed away from the split sections, while the shear force is directed along the split.
There is also a moment for both sections. These three internal reactions are equal in
magnitude and opposite in direction. In this course, we will deal with the following
internal reactions:

• N is the axial or normal force that is normal to the surface.

• V is the shear force that is parallel to the surface.

• M is the bending moment used for calculations involving beams with transverse
bending.

• T is the axial torque used for calculations involving shafts and twisting.

Calculations in this course must be performed on bodies in equilibrium. Recall that
we need to satisfy ∑

F = 0,∑
M = 0.

Shear and Bending Moment Diagrams are graphs of internal reactions. These are usually
drawn for the reactions along a beam. After calculating from equilibrium the unknown
forces, we section along a point of our choosing. Distributed loads are split along the
section. By convention, a split along a point C will produce an axial force NC to the
right, a shear force VC downwards, and a bending moment MC counterclockwise for the
left section. The right section would have these values in the opposite direction.

Remark 1.1. It is usually advantageous to take the sum of the moments at the section
when solving for the internal reactions of a section.
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§1.3 Shear and Bending Moment Diagrams

When a load is applied or a distributed load changes, we split just to the left and just to
the right. This is associated with an unknown N , V , and M . We will express V and M
as a function of x along the beam. We now solve in terms of x. To solve these problems,
we apply the following steps:

1. Draw the free body diagram with reactions.

2. Ensure equilibrium by determining unknown variables.

3. Solve by splitting into sections. Consider either the left or right section.

4. After splitting, we now need to consider the shear and bending moment.

5. Determine the shear and bending moment in terms of x.

6. Repeat for the remaining sections.

7. Plot diagrams noting zeroes, maximums, minimums, and points of interest (where
forces were applied).

Remark 1.2. The derivative dM/dx = V . Thus, the derivative of bending moment
diagram results in the shear diagram.

§2 July 7, 2017

§2.1 Relationship Between Shear and Bending Moment

We can relate the distributed load w(x) with its effect on V and M . Consider the
differential element dx. On either side of the differential element under a distributed
load, we require the resulting reaction shear and moment to establish equilibrium. Then,
by considering the differential change in shear, we find that

dV

dx
= −w.

A similar approach can be applied to the bending moment. Doing so, we obtain

dM

dx
= V,

∆M = MD −MC =

∫ D

C
V dx.

Note that when dM/dx = 0, V = 0. Thus, V = 0 when we have a maximum or minimum
M . The first equation above is used to determine the shape of the shear diagram. The
second equation above is used to find the shape of the bending moment diagram, while
the third equation above is used to calculate the value of M at different points of interest.

We can also relate the effect of a concentrated load F with its effect on V . Once again
considering the differential element, we find that

dV = −F.

Thus, for a downward F , the shear steps downward by a magnitude of F , and for an
upward F , the shear steps upward by a magnitude of F . The initial and final shear either
stepping upwards or downwards is given by the force at that location.
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The effect of an initial bending moment M0 gives us the relation

dM = −M0.

Thus, for a counterclockwise M0, the change in the moment will be negative and steps
downward with a magnitude of M0. Similarly, a clockwise M0 results in a positive change
in moment and steps upward with a magnitude of M0. The initial and final moment
either stepping upwards or downwards are given by the external moment at that location.

§3 July 10, 2017

§3.1 Axial Stress

Consider a long slender bar with length L and cross sectional area A. Axial stress,
denoted by σ, is defined as the force divided by the cross sectional area. The strength of
a bar depends on the force applied, the length of the bar, the cross sectional area, and
the properties of the material.

Consider a cylindrical bar with a concentrated force F applied at one end. To ensure
equilibrium, the total force on the other end must also be F . On this end, the force is
distributed over the face. Since stress is the force per unit area, we can relate average
stress by

σavg =
F

A
,

where F is the force, and A is the cross sectional area. The units of stress are in Pascals.
However, stress changes from point to point. Thus, for an area ∆A with a force of

∆F , we have

σpoint = lim
∆A→0

∆F

∆A
.

By conventional, we will consider a tensile force to be positive, and a compressive force
to be negative.

A concentrated force applied to the ends of a long cylindrical bar is intuitively con-
centrated at the centroid. At the ends, σ is not uniform. Near the middle region, σ is
very nearly uniform. The region of the bar where we can assume uniformity is referred
to as the uniform region of stress. This follows from Saint-Venant’s Principle, which
states that the difference between the effects of two different but statically equivalent
loads becomes very small at sufficiently large distances from load. In this course, we
will generally make this assumption when problem solving. Considering the differential
elements of dA and dF , we find that

F =

∫
dF =

∫
A
σdA ≈ σA,

where σ is the average stress in the middle uniform region.
Given two rods of cross sectional area A1 and A2, each with the same force F applied

at both ends, then their stresses are given by

σ1 =
F

A1
,

σ2 =
F

A2
.

We note that if A2 > A1, then σ2 < σ1. A material breaks or fails when it reaches an
ultimate stress σu. Thus, we would expect a bar with a larger cross sectional area to
break after a similar bar with a smaller cross sectional area.
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§3.2 Axial Stress Problems

Suppose we are given the maximum stress beyond which a bar will break. We are then
given a diagram of a bar in equilibrium, with the axial forces to the left balancing the
axial forces to the right. These forces are applied at different locations along the bar.
We would like to determine whether the bar fails. To solve these problems, we apply the
following steps:

1. Section along the bar whenever a new axial force appears.

2. We can then draw an axial force diagram. This is done by plotting the force
that acts along each section of the bar. These often take the form of horizontal
steps.

3. Calculate the stress σ of each region by dividing the force on that section by the
cross sectional area of that section.

4. Plot the stress diagram across the entire bar.

5. Compare with the maximum allowable stress.

§3.3 Rivets, Bolts, and Pins

Consider a connector holding two bars together. A force of F is applied to one bar, so a
similar force in the opposite direction is applied to the other bar. In the connector, the
top half is sheared one way, and the bottom half is sheared the other way. We section in
between the two forces, to find that the shear V is equal to the force F . Shear stress,
denoted by τ , is given by

τavg =
(F = V )

A
.

Bearing stress occurs in the material when a connector applies a force to the bar.
There is non-uniform compressive stress from the pin. This is always compressive, so F
is always negative. For a bar of thickness t, along which a force F is applied along the
connector of diameter d, the bearing stress is given by

σbearing ≈
F

t · d
.

§3.4 Stresses on an Oblique Plane

Instead of sectioning vertically, we can section along θ from the vertical. Doing so, the
internal axial force F remains the same. However, we now have a shear force V along
the oblique section, and a normal force N perpendicular to this oblique section, where θ
is the angle from the internal axial force F to N . We note that

N = P cos θ,

V = P sin θ.

Additionally, Aθ > A0, where Aθ is the oblique area, and A0 is the original cross sectional
area. This results since we are not splitting vertically. We have

A0 = Aθ cos θ,

Aθ =
A0

cos θ
.
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Now, we have different formulas for axial and shear stress:

σ =
N

A0
=

F cos θ

A0/ cos θ
=
F cos2 θ

A0
,

τ =
V

A0
=

F sin θ

A0/ cos θ
= F cos θ sin θA0.

There are several different scenarios of interest, as stress depends on orientation:

1. If θ = 0, then σ = F/A0 and τ = 0. This is the maximum value of σ.

2. If θ = 45, then σ = F/2A0 and τ = F/2A0. This is the maximum value of τ .

3. If θ = 90, then σ = 0 and τ = 0.

If we plot σ or τ against θ where 0 ≤ θ ≤ 90, this can be visualized as smooth curves
that indicate the axial and shear stress in different orientations.

§3.5 Factor of Safety

We recall that ultimate stress is given by

σu =
Fu
A
.

In the above equation, σu is the ultimate stress before material failure. This is determined
from experiment, and is unique to the material. Thus, Fu is the ultimate load. The
allowable stress and allowable load are necessarily less than the ultimate stress and
ultimate load respectively. Factor of Safety is defined in design codes, and is given by

FS =
Fu
FA

> 1,

where FS is the factor of safety, Fu is the ultimate load, and FA is the allowable load.
With a linear relationship between Fu and σu, we sometimes calculate FS using stress
instead of loads.

§3.6 Axial Strain

A bar of length L under a force F may stretch or deform by a length of δ. Axial strain,
denoted by ε, is the change in length divided by the original length. Thus,

ε =
δ

L
.

This is also known as engineering strain, and is a dimensionless quantity. In this
course, this value will be a small number in most applications. By convention, δ is
positive if there is an increase in length associated with tension, and δ is negative if there
is a decrease in length associated with compression.

In typical materials, if we plot F against σ, we first encounter a linear region, followed
by two bumps. This load displacement curve depends on A and L. This illustrates
structural behaviour. Normalizing the values, we can then plot a stress-strain curve.
This curve has the same general shape of the load displacement curve, but is now
independent of A and L. The stress-strain curve is now unique for a given material, and
thus illustrates material behaviour. The linear slope obtained from dividing ∆σ by ∆ε is
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known as Young’s Modulus, or the Modulus of Elasticity. This is given by E, and
is related by Hooke’s Law,

σ = Eε.

The region with linear slope is known as the elastic region, the remaining region
is known as the plastic region, the yield strength is given by the σy at which we
transition from the elastic region to the plastic region (beyond which we have permanent
deformation), and σu is the maximum σ that occurs at the second bump.

Example 3.1

Aluminum has a plastic region that is often arbitrarily defined at say a 0.2% offset.
Brittle materials such as cast iron and concrete break after briefly leaving the linear
region.

§4 July 12, 2017

§4.1 Stress Examples

To solve stress problems, we use the following steps:

1. We first need to solve for equilibrium. We will write all of the reaction forces
required for equilibrium in terms of the load w.

2. We now need to consider all of the maximum allowable σ and τ .

3. First consider failure in a bars. For a given σallow, we equate this with the force
on the bar (written in terms of w) divided by the cross sectional area of the bar.
Solving this, we obtain wmax in N/m. This is the max load for w for a tensile or
compressive load in the bar.

4. Note that we can also consider the tensile stress from the bar. Reinforced bars
would have a certain width and height associated with them. There are four sections
of this, so we equate σ with the force on the bar divided by (w ∗ h ∗ 4), where w is
the width and h is the height.

5. Now, consider failure in pins. We generally have double shear, where sectioning
gives us Vpin = F/2. The shear in the pin is therefore half of the force applied to
the pin (written in terms of w). For a given τallow, we equate this with Vpin divided
by the cross sectional area of the pin. Solving this, we obtain wmax in N/m. This
is the max load for w in the pin.

6. Note that for pins for which we have separated into vertical and horizontal compo-
nents, we must first consolidate the force by taking the net force at that location.

This may involve finding FA =
√
A2
x +A2

y.

7. The maximum load that can be placed on the system will therefore be the lowest
calculated w from all the pins and bars.

8. The bearing stress can be calculated by dividing the shear (Vpin = F/2) on the bar
by the width (same width as above) multiplied with the diameter of the pin.
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9. To determine factor of safety, we determine Fu from σu and the cross sectional area.
We then determine the ultimate load Pu from relating it to Fu in the equilibrium
reaction equations. Comparing this with Pallow, we can determine the factor of
safety.

§4.2 Axial Deformation

We recall that σ = Eε. We can substitute from the definitions of stress and strain and
rearrange to obtain

δ =
FL

AE
,

where F is the load at the two ends of the bar, L is the length of the bar, A is the cross
sectional area of the bar, and E is Young’s Modulus for the material. By the principle of
superposition, we can simply add changes in length for different components of a bar, so

δtotal =
∑ FiLi

EiAi
.

§4.3 Axial Statically Indeterminate Problems

We can determine the change in position of a point in a bar by considering the length
of the bar to be from the fixed end to the point of interest. Thus, δ now indicates the
change in position of this point. However, we cannot determine the change in length
of the point of interest when both ends of the bar are fixed. To solve these problems,
we need to generate another equation from the constraints. In this case, we have the
additional constraint that

δtotal = δAC + δCB = 0.

Thus, we section along the initial application of the force F after determining the
equilibrium condition of FA + FB = F . Take note to draw δ in the same direction as its
corresponding force FA or FB. We obtain

σAC =
FALAC
AACE

,

σCB = −FBLCB
ACBE

,

where the negative is introduced as one side is in compression. Combining the three
equations, we obtain

FALAC = FBLCB.

To summarize, we use the following steps for axial statically indeterminate problems:

1. Determine the equilibrium equations from statics.

2. Determine a compatibility or geometric constraint.

3. Link the forces to displacement through load displacement.
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§5 July 14, 2017

§5.1 Superposition (Flexibility or Force Method)

A more generalized technique for solving statically indeterminate problems is to first
remove a redundant support to obtain a statically determinate problem. We apply
external loads only. Doing this, we are able to determine the change in length δB. We
then apply the force FB to push the bar back so that the total change in length is 0.
This is done without any external loads acting on the system. We then consider the
geometric constraints. This may be rotation due to the location of the force.

§5.2 Temperature Change

We note that length change also depends on temperature. We denote the coefficient of
thermal expansion with α, where

δT = α(∆T )L.

Note that we are concerned with a change in temperature, where an increase in tempera-
ture is associated with an increase in length, and a decrease in temperature is associated
with a decrease in length. There is no stress when the bar is unconfined. When we have
a confined bar, an increase in temperature is associated with compressive forces, and a
decrease in temperature is associated with tension forces. To solve these problems, we
remove redundant constraints, apply ∆T to find the new length, then apply the reaction
force only. Doing this, we find that

α(∆T ) =
F

EA
,

σ = −F
A

= −Eα(∆T ).

where α is the coefficient of thermal expansion, ∆T is the change in temperature, F is
the reaction force, E is Young’s Modulus, and A is the cross sectional area.

§6 July 17, 2017

§6.1 Indeterminate Temperature Problems

For bars in series, they experience the same force under constrained thermal expansion.
The total increase in length is equal to the sum of the increase in length of each component
of the bar. That is, they experience the same force but expand to different lengths. For
bars in parallel, they experience different forces under constrained thermal expansion.
The increase in length is equal among all components of the bar. That is, they experience
the same expansion in length, but different forces. To solve these problems, we use
superposition to consider the temperature effects only, then consider the reaction force
effects only.
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